

Wet age-related macular degeneration and a number of other eye diseases, including congenital conditions, are related to mutated genes that result in blood vessel abnormalities. These can be treated with gene therapy, but delivering genetic material has proven to be difficult when dealing with large gene sequences that are common in retinal conditions.
Viruses have been the go-to vectors for delivering genes into the eye, but the immune system wants to fight them. Too often this results in poor efficacy on follow-up treatments. Moreover, they are not good at carrying large genetic payloads and there’s also a risk of cancer.
Now, researchers at Johns Hopkins University have devised a way to tightly pack long chains of DNA into nanoparticles and deliver those into the eye. Once inside the cells of the retina, the DNA bundles are released to promote the production of a therapeutic protein without worrying about any viral side-effects.
To make this possible, the team created a novel large polymer molecule to compress the DNA bundles very tightly. This molecule is biodegradable and leaves the eye and the body once its job is done. The compact vessel of the DNA and the polymer is small enough to enter living cells without causing damage.
Initially, the scientists delivered genetic material for a fluorescent protein into the eyes of mice to see whether it gets into the cells and produces the protein. Even months later, the eyes of the mice continued to glow. Once it was confirmed that the approach works and does so for a long time, the researchers delivered a gene that produces a protein (vascular endothelial growth factor (VEGF)) that leads to abnormal blood vessel growth into a group of rats. These animals developed blood-vessel growth similar to that seen in people with wet macular degeneration.
The last experiment was essentially the opposite, delivering gene therapy that generates a protein that deactivates VEGF. This is the same therapy as that already available but in the form of a nanoparticle that produces long-term effects and doesn’t require frequent eye injections. The results showed that after the nanoparticle injections, the animals had a 60% reduction in abnormal blood vessels compared with the controls, and the effect lasted for over a month.
“These results are extremely promising,” said Jordan Green, Ph.D., professor of biomedical engineering at the Johns Hopkins University School of Medicine, in a press release. “We have the ability to reach the cells most significantly affected by degenerative eye disease with non-viral treatments that can allow the eye to create its own sustained therapies.”
Full study in Science Advances: Suprachoroidal gene transfer with nonviral nanoparticles
Via: Johns Hopkins
Source link
more recommended stories
First Dedicated Pediatric and Neonatal Acute Dialysis Machine Released U.S.
Medtronic is releasing in the United.
ivWatch Monitors IV Placement Sites for Leakage, Now Cleared by FDA
ivWatch, a company based in Newport.
Micro-LEDs and Solar Panels Wirelessly Power Medical Implants
Researchers at the Gwangju Institute of.
Revolutionizing IV Access With TournIQ: Interview With Jonathan Ilicki, Co-Founder of Ortrud Medical
IV access is one of the.
Robotic Transcranial Doppler for Stroke Detection and Risk Assessment in COVID: Interview with Diane Bryant, Neural Analytics
Emerging evidence suggests that COVID-19 patients.
The Impact of COVID-19 on The Medical Device Industry
As of early May 2020, over.
A Virtual Care Platform for Respiratory Illness: Interview with Stacie Ruth, CEO of AireHealth
AireHealth, a medtech company based in.
Noona Cloud Tool for Cancer Patients: Interview with Jani Ahonala, VP, Global Patient Outcomes, Varian Medical
Varian Medical Systems, based in Palo.
Sweat Sensor Gathers Large Samples for Accurate Analysis
Sweat excreted by the skin contains.
Injectable Liquid Prosthesis to Treat Retinal Diseases Developed
Retinal prostheses promise the restoration of.
Leave a Comment